

IBPS RRB Officer Scale-I Preliminary Grand Test –IRP-180708 HINTS & SOLUTIONS

	ANSW	ER KEY		
1. (3)	21. (1)	41. (1)	61. (1)	_
2. (5)	22. (3)	42. (5)	62. (5)	
3. (2)	23. (4)	43. (1)	63. (2)	
4. (3)	24. (4)	44. (5)	64. (3)	
5. (5)	25. (2)	45. (1)	65. (1)	
6.(3)	26. (5)	46. (4)	66. (4)	
7. (2)	27. (4)	47.(5)	67. (5)	
8. (4)	28. (1)	48.(3)	68. (1)	
9. (1)	29. (2)	49.(1)	69. (1)	
10. (5)	30. (3)	50. (4)	70. (1)	ı
11. (1)	31. (1)	51. (3)	71. (5)	
12. (1)	32. (3)	52. (2)	72. (2)	d
13. (2)	33. (2)	53. (1)	73. (4)	7
14. (5)	34. (1)	54. (5)	74. (2)	
15. (1)	35. (4)	55. (2)	75. (5)	
16. (3)	36. (5)	56. (1)	76. (2)	
17. (1)	37. (1)	57.(2)	77. (1)	
18. (3)	38. (4)	58.(3)	78. (4)	
19. (1)	39. (5)	59.(4)	79. (5)	
20. (2)	40. (2)	60.(3)	80. (3)	

44 4-	T 11 1 A 15	C . 1
8. (4)	9. (1)	10. (5)
6.(3)	7. (2)	

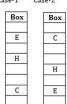
Two persons sit between A and D, one of them sits at the end of the row. D sits left to A. R is immediate left to T. C faces R, who does not sit at any end of the row. We get four possibilities:

ROW1 (facing south)	-	+	-	+	⊣ ⊢		-1-	-1-	-
ROW2 (facing north)	—	R	T T	-	⊣ ⊢	+	R	T	\dashv
tOW1 facing south)	۸ 	-	c	D	⊣ ⊢	A	-	c 	D
tow2 facing north)	-	-	_	_	⊣ ⊢	+	_	-	-

The one who faces S does not sit at the end. E does not face T. Also, T does not face B, so case1 and 2 gets eliminated, as there is no place left for E and B.

HINTS & SOLUTIONS

1. (3)

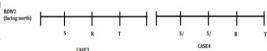

2. (5) N47, K3%, C6#, P18

3. (2) U\$E, @@L, Y*M 4. (3)

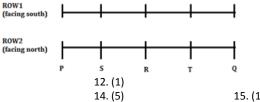
5. (5) **6-10.**

Four boxes are placed between C and E and neither of them is on top or bottom of the stack. There are two boxes between C and H. So from this there are two possible cases----

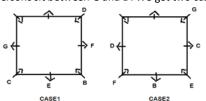
Case-1 Case-2



Box	Box
G	F
E	С
В	D
Н	A
A	Н
D	В
С	Е
F	G


There are as many boxes between A and E as between A and F. D is not placed just below or just above E. G is not placed just below or just above H. So, B is placed immediately above H in case1 and immediately below H in case2.

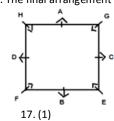
Now, it is given that the number of boxes places above H is more than that placed below H. Therefore, **case 1** will be eliminated. The final arrangement:


33	Box
Ī	F
Ī	С
	D
	Α
	Н
Ī	В
	Е
П	G

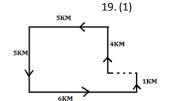
S is not neighbor of Q, from this position of S gets confirmed in case 4 i.e. immediate left to R. E does not face Q. More than one person sits between E and B. So, case4 gets eliminated. The final arrangement is:

G sits 2nd to the right of E. B sits exactly between E and F. C sits 2nd to the right of the one who is 3rd right to E. Two persons sit between G and D. We get two cases:

11.(1)


13.(2)

16-20.


Grand Test - IRP-180708

A does not face towards the center. No two persons are sitting adjacent to each other according to the English alphabet. Therefore, H does not sit next to G. So, case1 gets eliminated. The final arrangement is:

25. (2)
$$P > A > O > M > E$$

Q travel in Tata only with the one who likes red. R likes 26-30. green and travel with the one who likes Yellow. So, there are two possible cases. Either R travel in Maruti or in Honda. S does not travel in Tata or with R---

Case1

CARS	Persons(Colors)	
Maruti	R(green), (yellow)	
Honda	S	
Tata	Q, (red)	

Case

CARS	Persons(Colors)	
Maruti	S	
Honda	R(green), (yellow)	
Tata	Q, (red)	

20.(2)

23. (4)

CARS	Persons(Colors)
Maruti	R(green), T (yellow)
Honda	P(blue), S(white), V(black)
Tata	Q(pink), U(red)

P and V travel in same car but none of them likes Yellow or white. Therefore P and V are travelling with S. P does not like black. Q does not like black or white. T does not like red. So, T is travelling with R. U does not travel with the one who likes blue. So, Q likes pink. The one who likes white does not travel in Maruti, by this condition case 2 will be eliminated and we got the final arrangement as.

31. (1) C > B (True), E < B (False)

G > T (False), G = T (False) 32. (3)

33. (2) T > O (False), V < O (True)

34. (1) A < D (Ture), $F \le B$ (False)

35. (4) N < P (False), K < O (False)

36-40.

ELEMENT	CODE
Room	ka
Are	ro
Date/off	nx/pt
All	ja
Content	sj
We	mn
Learning	ca
Often/around	la/xa

30.(3)

41. (1)
$$\begin{aligned} & \text{I. } x^2 - 13x + 40 = 0 \\ & x^2 - 5x - 8x + 40 = 0 \\ & x (x - 5) - 8 (x - 5) = 0 \\ & x = 5, 8 \\ & \text{II. } 2y^2 - y - 15 = 0 \\ & 2y^2 - 6y + 5y - 15 = 0 \\ & 2y(y - 3) + 5 (y - 3) = 0 \\ & y = 3, -5/2 \\ & x > y \end{aligned}$$

42. (5)
$$1.5x^{2} + 17x + 6 = 0$$
$$5x^{2} + 15x + 2x + 6 = 0$$
$$5x(x + 3) + 3(x + 3) = 0$$

$$5x (x + 3) + 2(x + 3) = 0$$

$$x = -3, -\frac{2}{5}$$
II. $2y^2 + 11y + 12 = 0$

$$2y^{2} + 8y + 3y + 12 = 0$$

2y (y + 4) + 3 (y + 4) = 0

$$y = -4, -\frac{3}{2}$$

No relation $7x^2 - 19x + 10 = 0$ 43. (1)

$$7x^{2} - 14x - 5x + 10 = 0$$

$$7x(x-2) - 5(x-2) = 0$$

$$X = 2, \frac{5}{7}$$

II.
$$8y^2 + 2y - 3 = 0$$

$$8y^2 + 6y - 4y - 3 = 0$$

 $2y (4y + 3) - 1 (4y + 3) = 0$

$$y = \frac{-3}{4}, \frac{1}{2}$$

44. (5)
$$3x^2 - 25x + 8 = 0$$

$$3x^2 - 24x - x + 8 = 0$$

$$3x(x-8)-1(x-8)=0$$

$$x=8,\frac{1}{3}$$

II.
$$4y^2 - 13y + 3 = 0$$

$$4y^2 - 12y - y + 3 = 0$$

$$4y(y-3)-1(y-3)=0$$

$$y=3,\frac{1}{4}$$

No relation

Let length and breadth of rectangle be 3x cm and 2x cm 46. (4) respectively. Given,

$$3x \times 2x = 486 \ cm^2$$

$$3x \times 2x = 486$$
$$4x^2 = \frac{486}{6}$$

x = 9 cmLength of rectangle = $3 \times 9 = 27$ cm

Breadth of rectangle = $2 \times 9 = 18$ cm

Radius of cone = 18 - 4 = 14 cm Height of cone = 27 - 9 = 18 cm

Volume of cone = $\pi r^2 \frac{h}{3}$

$$=\frac{22}{7}\times14\times14\times\frac{18}{3}$$

$$=3696 cm^3$$

47.(5) Let Veer, Sameer and Neeraj invested Rs. 4x, Rs.5x and Rs. 8x respectively.

Simple interest received by Veer after two years

$$=4x\times\frac{25}{100}$$

= x Rs.

Simple interest received by Sameer after two years

 $=5x\times\frac{20}{100}$

Simple interest received by Neeraj after two years

 $= 8x \times \frac{40}{100}$ = 3.2x Rs.

Ratio of profit share of Veer, Sameer and Neeraj

 $= x \times 12 : x \times 18 : 3.2x \times 15$ = 12x : 18x : 48x

= 2:3:8

Required difference = $8450 \times \frac{(8-3)}{(2+3+8)}$

 $= 8450 \times \frac{5}{13}$

= 3250 Rs.

Grand Test - IRP-180708

- Let total saving of Aman be 8P Rs. 48.(3)

Share of Aman's son = 5P Rs. and, share of Aman's Daughter = 3P Rs.

CI received by his son

$$=5P[(1+\frac{10}{100})^2-1]=\frac{105P}{100}$$

ATQ
$$3P \times \frac{15 \times 3}{100} - \frac{105P}{100} = 480$$

$$3P \times \frac{15 \times 3}{100} - \frac{105P}{100} = \frac{135P}{100} - \frac{105P}{100} = 480$$

100 100 30P = 48000

P = 1600 Rs.

Aman son's share = 1600 × 5 = 8000 Rs.

Aman daughter share = $1600 \times 3 = 4800$ Rs.

49.(1)

 $\frac{8}{24} + \frac{12}{23} + \frac{28}{33} = 1$ (where x is time taken by R to complete whole work) $\frac{1}{3} + \frac{3}{32} + \frac{7}{8} = 1$ $\frac{1}{3} + \frac{3}{8} + \frac{28}{x} = 1$ x = 96 days

Time taken by R to complete the whole work= 96days

50. (4) Downstream speed = 20 + 4 = 24 km/hr

Upstream speed = 20 - 4 = 16 km/hr

$$\frac{(d-40)}{(d-24)} = 1$$

$$\frac{16}{3d-120-2d+48} = 1$$

48 d = 120 km

let boat will take T hours to cover a distance of (d + 48)

km in downstream and in upstream both $T=\frac{120+48}{24}+\frac{120+48}{16}$ T=7+10.5

$$T = \frac{120+48}{24} + \frac{120+48}{16}$$

T = 17.5 hours

No. of items sold of type A & C together 51. (3)

$$= 1200 \times \frac{25}{100} + 1500 \times \frac{32}{100} = 300 + 480 = 780$$

No. of items sold of type D & F together = $2200 \times \frac{45}{100} + 1800 \times \frac{35}{100} = 990 + 630$

Required percentage =
$$\frac{1620-780}{1620} \times 100$$

≃ 52%

Defective items which are unsold of type B & D together 52. (2)

Defective items which are unsold of ty
=
$$800 \times \frac{82}{100} \times \frac{3}{8} + 2200 \times \frac{55}{100} \times \frac{5}{11}$$

= 246 + 550 = 796

Non-defective items which are unsold of type B & D together $=800\times\frac{82}{100}\times\frac{5}{8}+2200\times\frac{55}{100}\times\frac{6}{11}$

$$= 800 \times \frac{82}{100} \times \frac{5}{8} + 2200 \times \frac{55}{100} \times \frac{6}{11}$$

= 410 + 660 = 1070

Required difference = 1070-796=274

Sold items of type C & E together 53. (1) $= 1500 \times \frac{32}{100} + 2500 \times \frac{48}{100}$ = 480 + 1200 = 1680

Unsold items of type A & E together

= 900 + 1300 = 2200

Required ratio = $\frac{1680}{2200}$ = 42 : 55

Total cost = $1500 \times \frac{32}{100} \times 200 + 2200 \times \frac{45}{100} \times 300$ 54. (5)

= 96000 + 297000 = 3,93,000

Required average = $\frac{393000}{2}$ = Rs1,96,500

Items of type F which are non-defective = $1800 \times \frac{60}{100} = 1080$ 55. (2)

Average items unsold of type A & E

Average items unsold of type A 8
$$= \frac{1}{2} \left[1200 \times \frac{75}{100} + 2500 \times \frac{52}{100} \right]$$

$$= \frac{900 + 1300}{2} = 1100$$

Required percentage =
$$\frac{1080}{1100} \times 100$$

 $=98\frac{2}{11}\%$

Total pens sold by P, R & T together = 180 + 180 + 120 56. (1)

Total note books sold by P & U together

= 280 + 280

= 560

Required $\% = \frac{480}{560} \times 100 = 85\frac{5}{7}\%$

Required ratio = $\frac{320+180}{220+220}$ 57.(2)

_ 500 = 440 = 25 : 22

Total note books sold by P & U together 58.(3)

= 280+280

= 560

Total pens sold by R & T together

= 180 + 120 = 300

Required $\% = \frac{560 - 300}{300} \times 100$

$$=\frac{260}{300}\times100$$

 $= 86\frac{2}{3}\%$

Average number of pen sold by P, Q & T = $\frac{180+240+120}{}$ 59.(4)

 $=\frac{540}{3}$

= 180 Average number of note books sold by T & U = $\frac{240+280}{2}$

= 520 2

= 260

Required difference = 260 - 180 = 80

Total number of pencils sold by Q, S & U together 60.(3)

= 220 + 180 + 220 = 620

Total number of note books sold by P, R & T together

= 280 + 240 + 240 = 760

Required difference = 760 - 620 = 140

61.(1)

Let amount be Rs. P
S.I. =
$$\frac{P \times R \times T}{100}$$
 [R \rightarrow rate, T \rightarrow time]
 $\frac{P \times 5 \times 3}{100}$

100 P = Rs. 1200

We know,

 $C.I. = P\left[\left(1 + \frac{R_1}{100}\right)\left(1 + \frac{R_2}{100}\right) - 1\right]$

 $R_1 = 10\%$

 $R_2 = R$

$$R_2 = R$$

$$318 = 1200 \left[\left(1 + \frac{10}{100} \right) \left(1 + \frac{R}{100} \right) - 1 \right]$$

$$\frac{318}{1200} + 1 = \left[\left(\frac{11}{10} \right) \left(1 + \frac{R}{100} \right) \right]$$

$$\frac{1518}{1200} = \frac{11}{10} \times \left(\frac{100 + R}{100} \right)$$

$$\therefore R = 15\%$$

∴ R = 15%

Let C.P. of cycle be 100 unit

Mark up price = $100 \times \frac{120}{100} = 120$ unit

S.P. after 15% discount = $120 \times \frac{85}{100} = 102$ unit S.P. after 10% discount = $120 \times \frac{90}{100} = 108$ unit

ATQ, (108 - 102) unit → 1800

1 unit = Rs. 300 .: C.P. of cycle = 300 × 100 = Rs. 30,000 Mark up price = 120 × 300 = Rs. 36,000 S.P. after 25% discount

= 36000 × 75/100 = Rs. 27,000 ∴ Required loss = S.P. - C.P. = Rs. 3000

Probability that no one can solve the given question $=\frac{2}{3}\times\frac{3}{5}\times\frac{1}{2}=\frac{1}{5}$

$$=\frac{1}{3}\times\frac{1}{5}\times\frac{1}{2}=\frac{1}{5}$$

Probability that the question will be solved = 1 -Probability that no one can solve the question

Let speed be S, distance be D & time be T 64. (3)

 $S = \frac{D}{T}$

$$S + X = \frac{D}{5} \qquad ...(i)$$

 $S - X = \frac{D}{8}$...(ii)

On adding both the equations, we get
$$2S = D\left[\frac{1}{c} + \frac{1}{c}\right]$$

2S = D
$$\left[\frac{1}{5} + \frac{1}{8}\right]$$

2S = D $\left[\frac{8+5}{40}\right]$
T = $\frac{D}{5} = \frac{80}{13} = 6\frac{2}{13}$ hours

Grand Test - IRP-180708

- Female population = $20,000 \times \frac{3}{10} = 6000$ 65. (1) Male population = 20,000 - 6000 = 14,000 Required ratio = $\frac{\frac{14000 \times \frac{140}{100} \times \frac{140}{100}}{6000 \times \frac{120}{100} \times \frac{120}{100}}$ = 343 : 108
- 114 133 156 66. (4) +13 +19 ∴ 187 is wrong
 - Right no. = 156 + 29 = 185 13, 17, 19, 23, 29 are prime numbers
- Pattern is 67. (5) 121 170 251 372 541 +49 +81 +121 +169 ↑ 9²
 - Wrong No. = 543 Right no. = 372 + 169 = 541
- Pattern is 68. (1) Wrong no. = 49
- Right no. = $336 \div 7 = 48$ Pattern is 69. (1) Wrong no = 490
- Right no = 376 + 115 = 491 70. (1) Pattern is $21 \times 1 + 2 = 23$ $23 \times 2 + 3 = 49$ 49 × 3 + 4 = 151 $151 \times 4 + 5 = 609$ 609 × 5 + 6 = 3051 Wrong no = 3053
- Right no = 609 × 5 + 6 = 3051 Required probability = $1 - \left[\frac{13}{52} + \frac{4}{52} - \frac{1}{52} \right]$ 71. (5)
 - $=1-\left[\frac{16}{52}\right]$ $=1-\frac{4}{13}$
- 72. (2) 3 digit number = $9 \times 10 \times 10 = 900$ Required answer = Total 3 digit number - none of digit is 4
 - $= 900 8 \times 9 \times 9$ = 900 - 648 = 252
- Ratio of amount invested by P, Q and R = 8:6:9 73. (4)
 - P Q R 8×12 6×5+10×7 9×12 96 : 100 : 108

Ratio of their profit shares

- 24 : 25 : 27
- ATQ,
- 3 unit = Rs. 1350
- 1 unit = Rs. 450
- Profit share of Q = $450 \times 25 = Rs. 11,250$

- Ratio of Alcohol and water in mixture = 60:40=3:274.(2)
 - Quantity of Alcohol left in mixture after 20 gm of mixture is taken out
 - $= 60 \times \frac{3}{5} = 36$ gm.
 - Quantity of water = $60 \times \frac{2}{c} = 24 \text{ gm}$
 - \therefore Required ratio = $\frac{36}{24+6}$ = 6 : 5
- 75. (5) Let total article bought = x
 - So, number of articles sold at different profit percent= $\frac{2}{\pi}x$, $\frac{3}{\pi}x$
 - For articles sold at 20% profit

$$\frac{Profit}{Selling Price} \times 100 = 20$$

- Profit $\frac{1}{\text{Selling Price}} = \frac{1}{5}$
- So, cost price = 4
- And selling price = 5

For article sold at $33\frac{1}{2}\%$ profit

$$\frac{\text{Profit}}{\text{Selling Price}} = \frac{1}{3}$$

- So, cost price = 2 and selling price = 3
- But cost price is same for both

Required ratio =
$$\frac{5 \times \frac{2}{5} x}{(3 \times 2) \times \frac{8}{5} x} = 5 : 9$$

- $\sqrt{64 \times 36} + \frac{420}{3} 540 = ? 800$ $? = \sqrt{2304} + 70 - 540 + 800$
- ? = 378 $\frac{16}{100} \times 1600 + \frac{?}{100} \times 1200 = 20 \times 122$ $256 + ? \times 12 = 2440$

76. (2)

77. (1)

- $(8)^3 + (15)^2 (12)^2 = ? 1220 1750$ 512 + 225 -144 = ? - 2970 ? = 3563
 - $20 \times \sqrt{?} = \frac{64}{100} \times 400 + \frac{12}{100} \times 1200$ $20 \times \sqrt{?} = 256 + 144$ $\sqrt{?} = \frac{400}{20} = 20$
 - ? = 400 $(?)^2 + \frac{14}{100} \times 1600 = 59 \times 12$
 - $(?)^2 + 224 = 708$ $(?)^2 = 484$